
Acta Cryst. (2000). A56, 511±518 Peng � Quasi-dynamical electron diffraction 511

research papers

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 23 February 2000

Accepted 18 May 2000

# 2000 International Union of Crystallography

Printed in Great Britain ± all rights reserved

Quasi-dynamical electron diffraction ± a kinematic
type of expression for the dynamical diffracted-
beam amplitudes

Lian-Mao Peng

Beijing Laboratory of Electron Micoscopy, Center for Condensed Matter Physics and Institute of

Physics, Chinese Academy of Sciences, PO Box 2724, Beijing 100080, People's Republic of China,

and Department of Electronics, Peking University, Beijing 100871, People's Republic of China.

Correspondence e-mail: lmpeng@lmplab.blem.ac.cn

It is shown that to a good approximation the dynamical diffracted electron-beam

amplitudes may be expressed in a form that is identical to that of the kinematic

theory of electron diffraction. The validity of this approximate form of the

dynamical electron diffraction is illustrated for thin ®lms of GaAs and Au

crystals, and its implications in electron crystallography for structural

determination and re®nement are discussed.

1. Introduction

In recent years, the ®eld of electron crystallography has been

becoming increasingly active as more and more experimental

evidence has emerged pointing toward the usefulness of

the kinematic type of approaches for dealing with electron

diffraction data (see Vincent et al., 1984; Li & Tang, 1985;

Gjùnnes et al., 1989; Peng & Wang, 1994; Dorset, 1995; Van

Dyck & Op de Beeck, 1996; Marks & Landree, 1998) and

many articles in Tivol (1999). The kinematic theory of electron

diffraction is based on two approximations. Firstly, it assumes

that the total electrostatic potential of a crystal may be

expressed as a summation over contributions of individual

atoms

V�r� �P
n

��rÿ rn�;

where �n�r� is the electrostatic potential associated with the

nth atoms. In making this partition, we have neglected charge

redistribution in the crystals. This is nevertheless an excellent

approximation, which is accurate for all but the lowest-order

re¯ections, and even for these lowest-order re¯ections the

error introduced by using this approximation is typically no

more than 2 to 5% (Spence, 1993; Ren et al., 1997). For almost

all structural electron crystallography work, the accuracy is

not limited by the use of this approximation.

The second approximation used in the kinematic theory is

more severe, which assumes that the diffracted electron-beam

amplitude equals the Fourier transform of the total electro-

static potential,

A�g� � FfV�r�g �P
n

fn�s� exp�2�ig � rn�; �1�

with s � g=2 and f �s� � Ff��r�g being the usual electron

atomic scattering factor (Cowley, 1992). We note here that the

electron atomic scattering factor de®ned in this way is in

general a real quantity. The usefulness of the kinematic

formulation lies in the facts that the diffracted-beam ampli-

tude may be evaluated readily via a simple summation

operation, rather than the much more complicated matrix

diagonization [as in the Bloch-wave-based theories of dyna-

mical electron diffraction (Hirsch et al., 1977; Humphreys,

1979; Spence & Zuo, 1992)] or multiple Fourier transforms in

both the real and reciprocal space [as in the multislice method

of Cowley & Moodie (Cowley & Moodie, 1957; Goodman &

Moodie, 1974)], and that many ef®cient crystallographic

methods developed in X-ray diffraction for structural deter-

mination and re®nement may be used directly (Woolfson &

Fan, 1995). It is, however, a well established fact that electron

diffraction by a crystal is dominated by multiple-scattering

events (Glauber & Schomaker, 1953; Hoerni & Ibers, 1953;

Ibers & Hoerni, 1954; Cowley, 1990; Peng & Wang, 1994), and

that the kinematic theory of electron diffraction cannot be

used quantitatively even for a monolayer of atoms. To illus-

trate the dynamical nature of electron diffraction, we have

shown in Fig. 1 plots of the phase and amplitude of the scat-

tered 100 keV electron as a function of s � sin �=�, with �
being the half angle of scattering and � the wavelength of the

incident electron. The ®gure shows clearly that the phase

depends on the angle of scattering, which is in contrast to the

ideal kinematic case of electron diffraction where the phase

equals zero for all angles of scattering. In this article, we will

present a simple kinematic type of expression for the dy-

namical diffracted-electron-beam amplitudes and show that

this expression may account well for the magnitude and phase
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variations with angles of scattering for thin ®lms composed of

almost all types of atoms.

2. Phase-object approximation and quasi-dynamical
theory

We start our discussions from a very powerful approximation

widely used in high-resolution imaging of atomic structures of

crystals, that is the phase-object approximation (POA) [®rst

introduced in Section 7(a) of Cowley & Moodie (1957)]. This

approximation is valid for thin crystals composed of all types

of atoms, including heavy atoms, and it becomes less accurate

for crystals that are thicker than say 10 nm. Using this

approximation, we may write the exit electron wave function

on the bottom face of a thin crystal as

 �x� � exp i
P

n

'n�xÿ xn�
� �

;

where 'n�x� denotes the projected atomic potential for the nth

atom along the beam direction:

'�x� � � R ��x; z� dz;

where � � 2�me�=h- 2 is the relativistic electron interaction

constant (Cowley, 1990). The diffracted-beam amplitude A�q�
is then given by a Fourier transform of the exit electron wave

function

A�q� � Ff �x�g
� Ffexp�i'1�xÿ x1��g � Ffexp�i'2�xÿ x2��g � . . . : �2�

This expression involves many operations of convolution,

denoted by �, which are not easy to calculate. Numerically,

diffracted-beam amplitudes are never evaluated using this

expression. In the limiting case of zero crystal thickness or

scattering power, we may assume that the conditionP
n

'n�xÿ xn� � 1

is satis®ed by all atoms involved such that a weak-phase-object

approximation (WPOA) becomes valid and the expression for

the diffracted-beam amplitude (2) reduces to

A�q� � F exp i
P

n

'n�xÿ xn�
� �� �

� F 1� i
P

n

'n�xÿ xn�
� �

� ��q� � i
P

n

fn�s� exp�2�iq � xn�; �3�

and this is the kinematic expression for the diffracted-beam

amplitudes by a projected potential. In general, this expres-

sion is invalid quantitatively even for a single layer of atoms,

and consequently the structural re®nement procedure cannot

be based on this expression.

Formally, we may de®ne a dynamical scattering factor

f �d��q� � ÿiFfexp�i'�x�� ÿ 1g; �4�

so that for a single atom we have

A�q� � Ffexp�i'�x��g � ��q� � if �d��q�: �5�

This is very similar to what Cowley & Moodie did in their 1959

paper on the scattering of electrons by atoms and crystals. The

Cowley & Moodie phase atom, i.e. an atom represented in the

form exp�i'�x��, may be derived from a more accurate MolieÁre

high-energy approximation (MolieÁre, 1947) derived from the

general partial wave theory of scattering from a central force

®eld (see also Glauber, 1959) by making a small-angle

approximation. Detailed calculation shows that the MolieÁre

high-energy approximation agrees with the exact partial-wave

method to an accuracy of 1% up to scattering angles of 10�

(Zeitler, 1964, 1967) and that the Cowley & Moodie phase-

atom approximation agrees with the more accurate methods

for most atoms over the range of scattering angles normally

used in diffraction experiments with solids (Cowley, 1990).

It should be pointed out that f �d��q� de®ned above in (4) is

an atomic quantity, meaning that it is independent of the

environment in which the atom is embedded. This factor

depends, however, on the acceleration voltage E. Numerically,

f �d��q� may be readily obtained by using an analytical

expression for the Cowley & Moodie phase atom exp�i'�x��
[see equation (5)] and one of the FFT routines [e.g. routine

FOURN.f given in Numerical Recipes (Press et al., 1986)]. In

equation (5), the ®rst term corresponds to the incident plane

wave along the z axis and the second term to the diffracted

wave. In general, the factor f �d��q� is a complex quantity as

shown in Fig. 1 for platinum and oxygen atoms. If we further

assume that we may neglect higher-order terms, equation (2)

then becomes

Figure 1
The magnitudes and phases of the electron scattering amplitudes for Pt
and O atoms. The primary-beam energy is 100 keV.



A�q� � Ffexp�i'1�xÿ x1��g � Ffexp�i'2�xÿ x2��g � . . .

� f��q� � if
�d�
1 �q� exp�2�iq � x1�g

� f��q� � if
�d�
2 �q� exp�2�iq � x2�g � . . .

� ��q� � i
P

n

f �d�n �q� exp�2�iq � xn�; �6�

i.e. the dynamical diffracted-beam amplitudes are propor-

tional to the dynamical structure factors of the crystal,

F�d��s� �P
n

f �d�n �q� exp�2�iq � xn�:

This expression is identical to the kinematic expression (3),

but with the electron atomic scattering factors fn being

replaced by the dynamical scattering factor f �d�n , and the error

introduced in this approximation is of the second order in

jf �d��s�j, i.e. O��f �d�n �2�. Explicitly, the leading terms of the error

function O��f �d�n �2� for all q 6� 0 are given by

O��f �d�n �2� �
P

j;k<j

�if �d�j �q� exp�2�iq � xj��

� �if �d�k �q� exp�2�iq � xk��
� P

j;k<j;l<k

�if �d�j �q� exp�2�iq � xj��

� �if �d�k �q� exp�2�iq � xk��
� �if �d�l �q� exp�2�iq � xl�� � . . .

� F P
j;k<j

'0�xÿ xj�'0�xÿ xk�
( )

� F P
j;k<j;l<k

'0�xÿ xj�'0�xÿ xk�'0�xÿ xl�
( )

� . . . ; �7�
where '0�x� is related to the inverse Fourier transform of the

dynamical scattering factor f �d��q�. The error function

O��f �d�n �2� will have vanishing value when all atoms are well

separated such that the overlap between different atoms are

negligible, i.e. for all j 6� k we have '0�xÿ xj�'0�xÿ xk� � 0.

This requirement may be satis®ed for a monolayer of a crystal

and along a low-index zone axis where all atoms are laterally

well separated and have different coordinates xn. Shown in

Fig. 2(a) is a two-dimensional distribution of the [001]

projected potential ��x; y� for a monolayer of a GaAs single

crystal. This ®gure shows four conventional GaAs unit cells,

with a Ga atom sitting at the center of the ®gure, surrounded

by 4 nearest As atoms, 8 second-nearest As atoms, 12 third-

nearest Ga atoms and then 16 As atoms at the edges of the

®gures. All atoms are well separated in this case and there

exists little overlap between neighboring atoms. Equation (6)

is expected to work well in this case.

A thin ®lm usually consists of more than a monolayer of a

crystal. When high-energy electrons are incident at the thin

®lm along a low-index zone axis, there exist many atom strings

or columns of atoms each with common lateral atomic coor-

dinates xn. Although overlap between different atom strings is

small, overlap between atoms in the same string is large and

cannot therefore be neglected. For a thin ®lm consisting of

only a few monolayers of light atoms, we may neglect terms

involving �'0�x��2, i.e. assume that an electron will be scattered

by each atom only once. In reciprocal space, this is equivalent

to say that the validity of the kinematic type of expression (6)

depends on the smallness of the magnitude of the dynamical

scattering factor and, in general, the smaller the magnitude of

jf �d��s�j the better expression (6) works.
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Figure 2
(a) Projected potential distribution for a GaAs single crystal and (b)
corresponding electron diffraction pattern. The crystal thickness is
5.65 AÊ , the primary-beam energy is 100 keV and the incident-beam
direction is along the [001] zone axis.
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We now consider how to estimate the magnitude of dy-

namical scatterng factors. Utilizing the parameterized form of

the electron atomic scattering factor (Peng, 1999; Doyle &

Turner, 1968)

f �s� �P
k

ak exp�ÿbks2�; �8�

we have the following expression for the three-dimensional

distribution of the electrostatic potential of a single atom

(Peng, 1999):

��r� � h2

2�m0e

X
k

ak

4�

bk

� �3=2

exp ÿ 4�2

bk

�x2 � y2 � z2�
� �

:

The projected potential is then given by

��x; y� �
Z 1
ÿ1

��x; y; z� dz

� 2h2

m0e

X
k

� ak

bk

�
exp ÿ 4�2

bk

�x2 � y2�
� �

:

For a single atom, we have the following expression for the

exit electron wave function

 �x; y� � exp i4�� 1� eE

m0c2

� �X
k

ak

bk

� �(

� exp ÿ 4�2

bk

�x2 � y2�
� ��

; �9�

and numerically the dynamical scattering factor may be

readily obtained by Fourier transform of this function. Shown

in Fig. 3 are maximum magnitudes of the dynamical scattering

factors (occurring at zero angle of scattering) for all neutron

atoms in the Periodic Table and three accelerating voltages. It

is seen that for all atoms we have f �d�max<1:0, and the magnitudes

decrease substantially from that at 100 to 400 keV.

An estimation of the magnitudes may be made using the

WPOA. Using (9), the WPOA diffracted-beam amplitude is

given by

f �qx; qy� � ÿiFf �x; y� ÿ 1g

� F 4�� 1� eE

m0c2

� �X
k

ak

bk

exp ÿ 4�2

bk

�x2 � y2�
� �( )

� � 1� eE

m0c2

� �X
k

ak exp ÿ bk

�4��2 �q
2
x � q2

y�
� �

: �10�

Although the above expression differs substantially from the

dynamical scattering factor, with the latter being in general a

complex function, we note that even for a heavy atom such as

a platinum atom the magnitude of the dynamical scattering

factor differs only a few percent from the usual electron

atomic scattering factor (see Fig. 1), we may therefore use the

above formula (10) and ak and bk given by Peng (1999) to

estimate the magnitude, noting that numerically the electron

wavelength in the above expression is measured in AÊ , the

primary-beam energy eE is measured in keV and that

m0c2 � 511 keV. Equation (10) shows clearly that the magni-

tude of the scattering amplitude f �q� depends on the primary-

beam energy via a parameter

p � ��1� eE=m0c2� � h=m0�;

where � is the velocity of the high-energy electron. This

parameter decreases with increasing accelarating voltage E

and approaches the Compton wavelength �c � h=m0c and the

dependence of the parameter on E is given in Fig. 4.

Taking silicon as an example, we have a1 � 0:3626,

a2 � 0:9737, a3 � 2:7209, a4 � 1:7660 AÊ , � � 0:037 and

0.0164 AÊ for 100 and 400 keV, respectively. It can be easily

estimated that for 100 keV the higher-order terms will become

comparable to that appearing in equation (6) for about four

monolayers of silicon crystal; for 400 keV, the number is about

Figure 3
Maximum magnitudes of dynamical scattering amplitudes for all neutral
atoms in the Periodic Table and three different voltages.

Figure 4
Voltage dependence of the parameter p and the wavelength of the
incident electron. Both p and � are given in AÊ .



six. On the other hand, for La, these numbers are reduced by

three times, i.e. are of the order of a monolayer. Equation (6)

is therefore not valid in general for thin ®lms composed of

more than a monolayer of heavy atoms.

We now consider an alternative expression to (6). Assuming

that there exists `n atoms in the nth atom string, the exit

electron wave function  �x� may then be written as

 �x� � exp i
P

n

`n'n�xÿ xn�
� �

:

In analogy with the de®nition of the dynamical scattering

factor f �d�, we may introduce a dynamical string scattering

factor f �s� such that

f �s��s� � ÿiFfexp�i`'�x�� ÿ 1g: �11�
In terms of these dynamical string scattering factor, we may re-

write (6) as

A�q� � ��q� � i
P

n

f �s��s� exp�2�iq � xn�; �12�

and again a kinematic type of expression is obtained.

3. Results and discussion

Fig. 2(b) shows a calculated [001] zone-axis electron diffrac-

tion pattern from a monolayer of a GaAs single crystal. The

pattern corresponds to the projected potential shown in Fig.

2(a) and a primary-beam energy of 100 keV. In Fig. 2(b),

the central bright spot is the transmitted zero spot, the

surrounding four weak spots are �200�; �020�; �200� and �020�.
The horizontal line passing through the zero beam therefore

contains visible (200), (400), (800), (120000) (160000) and

(200000) re¯ections toward the right of the zero beam.

Shown in Fig. 5 are the calculated (a) magnitudes and (b)

phases of re¯ections lying on the horizontal line passing

through the zero spot shown in the center of Fig. 2(b). The

three curves shown in the ®gure were calculated using full

dynamical theory, kinematic type of dynamical electron

diffraction theory, i.e. equation (6), and kinematic theory,

respectively. It is seen that although the kinematic theory

results in roughly correct magnitudes of the diffracted beams

(Fig. 5a) for a monolayer of a GaAs crystal, it fails completely

in predicting the dependence of the phases of the diffracted

beams on the angles of scattering. The quasi-dynamical

expression (6), on the other hand, reproduces beautifully both

the magnitudes and phases for all beams.

Another interesting feature shown in Fig. 5 is that although

the phases of the diffracted-beam amplitudes as predicted by

the kinematic theory are completely wrong, especially for

higher-order re¯ections, the magnitudes predicted by the

kinematic theory agree well with that predicted by the full

dynamical theory. Within the validity of (6), we will show that

this can be proved analytically for crystals composed of only

one kind of atom. By writing the dynamical scattering factor

as f �d��q� � f �q� exp�i��q�� and using (6), we obtain the

diffracted-beam intensities

I�q� � A�q� � A��q�

� ��q� � i
P

n

fn�q� exp�i�n�q�� exp�2�iq � xn�
� �
� ��q� ÿ i

P
n

fn�q� exp�ÿi�n�q�� exp�ÿ2�iq � xn�
� �

� ��q� ÿ 2
P

n

fn�0� sin �n�0� �
P

n6�n0
fn�q�fn0 �q�

� expfi��n�q� ÿ �n0 �q��g exp�2�iq � �xn ÿ xn0 ��:
For a crystal with only one kind of atom and non-zero angle of

scattering, we have

I�q� � P
n

fn�q� exp�2�iq � xn�
���� ����2; �13�

that is the diffracted-beam intensities are exactly the same as

that from a crystal as if it was composed of atoms all with zero
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Figure 5
Calculated (a) magnitudes and (b) phases of several diffracted beams
from a GaAs single crystal. These diffracted beams correspond to (200),
(400), (600), (800), (100000), (120000) and (160000) re¯ections, respectively.
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phases �n�q� � 0. For light atoms, such as H and O, and

moderately heavy atoms, such as Ga and As, the kinematic

and dynamical scattering factors have almost the same

magnitude jf �q�j as the dynamical scattering factor; equation

(13) shows that the kinematic theory and therefore the usual

electron atomic scattering factors may be used for

constructing potential maps V�x� and in structural re®nement.

For heavy atoms, such as Pt and Au, the magnitude of the

dynamical scattering factor differs by a few percent from that

of the usual atomic scattering factor (see Fig. 1). The kine-

matic theory is expected to work reasonably well but be

quantitatively not accurate. Shown in Fig. 6 are calculated

diffracted-beam magnitudes and phases from a monolayer of

Au atoms. The three curves shown in the ®gure were calcu-

lated using the full dynamical theory, the kinematic theory and

the quasi-dynamical expression (6). This ®gure shows clearly

that, for even a monolayer of Au atoms, the diffracted-beam

magnitudes start to deviate from the kinematic theory, unlike

that for crystals composed of only light and moderately heavy

atoms, and that the kinematic phases are very different from

the true dynamical phases. The quasi-dynamical expression

(6), on the other hand, again reproduced excellently both the

magnitudes and phases of these diffracted-beam amplitudes

except the zero beam. The error in the zero beam is due

mainly to the fact that to a ®rst-order approximation the

overlap between adjacent atoms may be taken into account via

a shift in the crystal inner potential (Peng et al., 1998), or in

other words the overlap affects mainly the zero and lowest-

order re¯ections.

We now consider diffraction by a thin ®lm composed of

heavy scatters, that is a ®lm composed of 40 layers of Au

atoms. Application of the quasi-dyanmical expression (6) fails

to predict correctly both the phases and magnitudes for this

thin ®lm, as shown clearly in Fig. 7. The three curves shown in

the ®gure were calculated for 100 keV using full dynamical

theory (denoted as dynamical), direct summation of dy-

namical atomic scattering factors (denoted as atomic factor)

Figure 7
Calculated (a) magnitudes and (b) phases of diffracted-beam amplitudes
from a thin ®lm composed of 40 layers of Au atoms and for a primary-
beam energy of 100 keV.

Figure 6
Calculated (a) magnitudes and (b) phases of several diffracted beams
from a monolayer of a single crystal of Au. These diffracted beams
correspond to the (200), (400), (600), (800), (100000) and (120000)
re¯ections, respectively.



and summation over dynamical string scattering factors

(denoted as string factor). These ®gures show that, for scat-

tering by a ®lm composed of even heavy scatters like Au, the

kinematic type of expression (12) for atom strings works well.

In crystal structural re®nement, only two parameters are

needed for each atom string, that is the atomic species and

number of atoms within each string. The task of structural

re®nement based on expression (12) is expected to be much

easier than a full re®nement based on the full dynamical

diffraction theory (Tsuda & Tanaka, 1995).

For a thin ®lm composed of a single layer of Au atoms, Fig. 6

shows that the phase of the diffracted electron beam decreases

with increasing angle of scattering. For a thicker ®lm

composed of 40 layers of Au atoms (see Fig. 7), however, the

phase shows an oscillating dependence on the angle of scat-

tering. This oscillating behavior may be understood from the

POA expression for the exit electron wave function

 �x� � exp�i��x�� � cos���x�� � i sin���x��;
where

��x� �P
n

'n�xÿ xn�

is the total projected potential of the thin ®lm. For a very thin

®lm, we have

 �x� � 1� i��x�;
i.e. the imaginary part of the electron wave function is

proportional to the projected potential. Shown in Fig. 8 are

calculated imaginary parts of the electron wave function for a

thin ®lm of Au. The three curves shown in the ®gure were

calculated for an Au ®lm of 0.2 monolayer, 0.7 monolayer and

2.5 monolayer, respectively. The curve marked 0.2 monolayer

represents roughly the projected potential distribution, and

corresponding variation in the phases of the diffracted beams

with scattering angle are determined mainly by the structure

of the crystal.

For a slightly thicker ®lm satisfying the condition

f��x�gmax <�=2;

where the subscript max denotes the maximum value of the

projected potential, the imaginary part of the electron wave

function does not have a simple linear relation with the

projected potential. Nevertheless, the imaginary part of the

wave function shows a singly peaked distribution around each

atomic site, and Fourier transform of this part gives a distri-

bution that decreases with increasing scattering angle and a

phase variation as shown in Fig. 7 (curve marked with atomic

factor).

For a thicker ®lm with

f��x�gmax >�=2;

multiple peaked distribution is expected around each atomic

site for the imaginary part of the electron wave function. The

curve shown in Fig. 8 and marked 0.7 monolayer was calcu-

lated for an Au ®lm of 0.7 monolayer thick. This ®lm has a

maximum value of the projected potential f��x�gmax that is

slightly larger than �=2. The imaginary part of the electron

wave function is seen to have split into a two-peaked distri-

bution around each atomic site. With increasing ®lm thickness,

more oscillations are introduced around the atomic sites (see

Fig. 8, the curve marked 2.5 monolayer). Fourier transform of

this oscillating imaginary part of the electron wave function

will also exhibit oscillations, leading to oscillating phases of the

diffracted electron beams.

Approximating the projected potential around each atom

with an ideal potential well of constant depth, i.e.

��x� � V0t; if inside the potential well

0 otherwise,

�
where t is the thickness of the ®lm. The electron wave function

will then become a periodic function of t, its periodicity being

2�=V0. Although this ideal situation cannot be realized in

practice, a tightly bound Bloch wave excited in the crystal feels

a constant potential (Peng & Gjùnnes, 1989) very similar to

the ideal situation described above. For each strongly excited

Bloch wave, we then expect a periodicity in its thickness

dependence. When two or more Bloch waves are strongly

excited, more than one periodicity is involved and interference

between different Bloch waves will result in complicated

contrast with varying crystal thickness, i.e. thickness fringes.

4. Conclusions

In this paper, we have shown that, for a thin ®lm, when there

exists little or negligible overlap between electrostatic

potentials of adjacent atoms, the dynamical diffracted-beam

amplitudes may be expressed as a summation of dynamical

scattering factors

A�q� � ��q� � i
P

n

f �d�n �s� exp�2�iq � xn�; �14�

that is a kinematic type of expression for the dynamical

diffracted-beam amplitudes is obtained. For light and
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Figure 8
Calculated imaginary part of the electron wave function after passing
through a thin ®lm of Au.



research papers

518 Peng � Quasi-dynamical electron diffraction Acta Cryst. (2000). A56, 511±518

moderately heavy atoms, the dynamical atomic scattering

factor f �d��s� has almost identical magnitude to the usual

electron atomic scattering factor, such as those tabulated by

Peng et al. (Peng et al., 1996; Peng, 1999). For heavy atoms, the

magnitude of f �d��s� may differ from the usual electron atomic

scattering factor by a few percent.

We have shown that, for thin crystals composed of only light

and moderately heavy atoms, the phases of the diffracted

electron-beam amplitudes may differ substantially from that

predicted by the kinematic theory. The diffracted-beam

intensities are, however, identical to those resulting from a

crystal as if it was composed of atoms all having zero phases

[i.e. as if f �d��s� was real]. For crystals composed of heavy

atoms, the above statement remains valid but the real scat-

tering factors f �d��s� differ by a few percent from the usual

atomic scattering factors. The kinematic theory is expected to

work reasonably well but not be quantitatively accurate.

For a moderately thicker crystal when the kinematic type of

expression (14) based on dynamical scattering factors are not

valid but the phase-object approximation is still a good one, a

similar kinematic type of expression may be obtained where

the dynamical atomic scattering factors are replaced by

dynamical string scattering factors f �s��s�. This new expression

is slightly more complicated than cases when there exists

negligible overlap between adjacent atoms, for two param-

eters are now required to specify an atom string, i.e. the atomic

species and number of atoms in the string, but it reproduces

well both the phases and magnitudes of the diffracted elec-

tron-beam amplitudes.

For thicker crystals, the phase-object approximation

becomes less accurate and our kinematic type of expressions

cannot be applied quantitatively for analyzing experimental

microscopy data. Extensive computation reveals, however,

that the atom string approximation works well even for crys-

tals with larger thickness. This fact suggests that a kinematic

type of approximation works even for crystals with thicknesses

much larger than 100 AÊ . The effective scattering factors

involved in the expression cannot, however, be simply related

to the atomic or string potential. For moderate accelerating

voltages, Van Dyck & Op de Beeck (1996) have shown that the

diffracted-beam amplitudes may be related to some bound

eigenstates of the projected atom string potentials. These

string potentials depend, however, on the interatomic

distances along the strings and therefore are not true atomic

quantities. It has been shown nevertheless that the kinematic

types of expression are useful in many important applications,

including calculating high-resolution electron images, diffuse

scattering and structure retrieval.

In a previous publication (Peng & Wang, 1994), we have

shown that the kinematic theory works better for lower angles

of scattering. The argument behind that conclusion is that

electrons are most likely to suffer from multiple-scattering

events if the electrons are incident at the atoms with smaller

impact distances (i.e. the nearest electron±nucleus distance)

and therefore being scattered toward larger angles. In the light

of the present work, our earlier conclusion simply means that

the dynamical scattering factors may be approximated by the

kinematic atomic scattering factors better for lower-order

re¯ections than for higher-order re¯ections. The argument

presented in the present work is therefore more general and

may be used even quantitatively for analyzing electron

microscopy data from a thin ®lm.
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